Table of Contents

Texas Instruments

Try to put the latest devices on top of each section and mark end-of-line products. Only specify the main parameters of the micro controllers and go more into deep with details about the CAN interface. Always try to put a link to the data sheet or manual.

8 bit Controllers

16 bit Controllers

MSP430 16 bit RISC low power CPU. The 430 doesn’t have a CAN protocol controller yet, you need to get an external CAN controller (note this is in addition to the differential bus transceiver which is always needed). Recently I read a German article “Fit für den Einsatz im Automobil” where author Ralf Eckhardt mentioned: “derivates with a singly 5V supply, 5V AD converter, CAN, LIN and imroved timer …. will be avaialbale 2014. — Heinz-Jürgen Oertel 2012/06/07 13:29

32 bit Controllers

66AK2Gx DSP + ARM

66AK2 overview
ARM Cortex A15 @600 Mhz and C66x DSP @ 600 MhZ, 2 x DCAN, Ethernet, USB, Audio, Display Subsystem, 2 x programmable realtime unit (PRU)

Sitara Cortex A8

Sitara Cortex A9

Sitara Cortex A15

Cortex R

Cortex M3

Cortex M4

64 bit Controllers

AM654 SoC TI AM654 “Keystone III” quad core Arm Cortex-A53 + dual lockstep Cortex-R5F processor. with dual dual CAN-FD using Bosch M_CAN. First information here. And a technical manual PDF.

DSPs

Mixed

F28M3x dual-subsystem microcontroller combines an ARM Cortex-M3™ core with the C28x core on to one device. The C28x with up to 150MHz is optimized for Real-time control. The M3x with up to 100MHz is optimized for Host communications: Ethernet, USB, CAN, UART, SPI, I2C and Scheduling and Operating Systems. The Cortex M3 CPU has two CAN channels.
See above Concerto family.

SoC Processors for Advanced Driver Assist Systems (ADAS)

Stand alone CAN Controllers

System Basic Chip